Predicting Ridership Using Smart Card Data



Predicting Ridership Using Smart Card Data

Authors

Niels Van Oort, Delft University of Technology / Goudappel Consultants, Marc Drost, HTM, Menno Yap, Goudappel Consultants

Description

We applied Dutch smart card data for analysis of passenger volumes and routing and performed what-if analyses by using existing transport planning software.

Abstract

New data sources in the public transport industry enable the rise of a new generation of transport demand models. We applied Dutch smart card data for analysis of passenger volumes and routing and performed what-if analyses by using existing transport planning software. We focused specifically on public transport operators by providing them relative simple (easy to build, low calculation time) models to perform these what-if analyses. The data, including transfer information, is converted to passengers per line and an OD-matrix between stops. This matrix is assigned to the network to reproduce the measured passenger flows. After this step, what-if analysis becomes possible. The effects of line changes on route choice can already be investigated when fixed demand is assumed. However, by introducing an elastic demand model the realism of the modeled effects is improved, because network changes induce changes in level of service, which affects the demand for public transportation. This elastic demand model was applied on a case study in The Hague. We imported the smart card data into a transport model and connected the data with the network. The tool turned out to be very valuable for the operator to gain insights into the effects of small network changes.
In addition to this basic model, we also applied a capacity constrained assignment method. The most important aspects on which passengers base their choice for public transport travelling are the perceived travel time, costs, reliability and comfort. Despite this importance, comfort is often not explicitly considered when predicting demand. The case study results indicate that not considering capacity and comfort effects can lead to a substantial underestimation of effects of certain measures aiming to improve public transport. This means that benefits of measures that reduce crowding for both passengers and operators can now be quantified and incorporated in the decision-making process. We also illustrate that this extended modelling framework can be applied in practice, requiring short calculation times and leading to better predictions of public transport demand.

Publisher

Association for European Transport